Margolus–Levitin theorem

From Wikipedia, the free encyclopedia

The Margolus–Levitin theorem states that the processing rate of all forms of computation (including quantum computation) cannot be higher than about 6 × 1033 operations per second per joule of energy. The theorem is named for Norman Margolus and Lev B. Levitin, who derived this fundamental limit on the rate of computation.

Stating the bound for one bit is as follows:

A quantum system of energy E needs at least a time of to go from one state to an orthogonal state, where h is the Planck constant (6.626×10−34 J⋅Hz−1[1]) and E is average energy.

See also[edit]


  • Norman Margolus, Lev B. Levitin (1998). "The maximum speed of dynamical evolution". Physica D. 120 (1–2): 188–195. arXiv:quant-ph/9710043. Bibcode:1998PhyD..120..188M. doi:10.1016/S0167-2789(98)00054-2. S2CID 468290.{{cite journal}}: CS1 maint: uses authors parameter (link)
  • Deffner, Sebastian; Campbell, Steve (2017), "Quantum speed limits", Journal of Physics A, 50 (45): 453001, arXiv:1705.08023, Bibcode:2017JPhA...50S3001D, doi:10.1088/1751-8121/aa86c6, S2CID 3477317
  • Jordan, Stephen P. (2017), "Fast quantum computation at arbitrarily low energy", Physical Review A, 95 (3): 032305, arXiv:1701.01175, Bibcode:2017PhRvA..95c2305J, doi:10.1103/PhysRevA.95.032305, S2CID 118953874
  • Lloyd, Seth; Ng, Y. Jack, "Black Hole Computers", Scientific American (April 2007), p. 53–61
  • Sinitsyn, Nikolai A. (2018). "Is there a quantum limit on speed of computation?". Physics Letters A. 382 (7): 477–481. arXiv:1701.05550. Bibcode:2018PhLA..382..477S. doi:10.1016/j.physleta.2017.12.042. S2CID 55887738.

  1. ^ "2018 CODATA Value: Planck constant". The NIST Reference on Constants, Units, and Uncertainty. NIST. 20 May 2019. Retrieved 2021-04-28.