Chipaque Formation

Coordinates: 4°27′07″N 74°03′20″W / 4.45194°N 74.05556°W / 4.45194; -74.05556
From Wikipedia, the free encyclopedia
Chipaque Formation
Stratigraphic range: Cenomanian-Turonian
~97–90 Ma
TypeGeological formation
Unit ofVilleta Group
UnderliesGuadalupe Gp
 Arenisca Dura Fm
OverliesUne Formation
Thicknessup to 1,700 metres (5,580 ft)
Lithology
PrimaryOrganic shale
OtherSandstone, limestone, siltstone
Location
Coordinates4°27′07″N 74°03′20″W / 4.45194°N 74.05556°W / 4.45194; -74.05556
RegionAltiplano Cundiboyacense
Eastern Ranges, Andes
Country Colombia
Type section
Named forChipaque
Named byHubach
LocationChipaque
Year defined1957
Coordinates4°27′07″N 74°03′20″W / 4.45194°N 74.05556°W / 4.45194; -74.05556
RegionCundinamarca, Boyacá
Country Colombia
Thickness at type section1,027 metres (3,370 ft)

Paleogeography of Northern South America
90 Ma, by Ron Blakey

The Chipaque Formation (Spanish: Formación Chipaque, K2cp, Kc) is a geological formation of the Altiplano Cundiboyacense, Eastern Ranges of the Colombian Andes. The formation is also described as Gachetá Formation, named after Gachetá, in the area of the Llanos foothills of the Eastern Ranges. The predominantly organic shale formation dates to the Late Cretaceous period; Cenomanian-Turonian epochs and has a maximum thickness of 1,700 metres (5,600 ft). The formation, rich in TOC, is an important oil and gas generating unit for the giant oilfields Cupiagua and Cusiana of the Eastern Ranges as well as in the Llanos Orientales.

Etymology[edit]

The formation was named in 1931 as group and as formation in 1957 by Hubach after Chipaque, Cundinamarca.[1]

Description[edit]

Lithologies[edit]

The Chipaque Formation with a maximum thickness of 1,700 metres (5,600 ft), is characterised by a sequence of pyritic organic shales, limestones and siltstones, with sandstone banks intercalated in the formation.[2] The Chipaque Formation contains a high density of fauna.[1] The formation is rich in TOC and one of the principal source rocks for oil and gas generation in the foothills of the Eastern Ranges,[3] sourcing fields as Cusiana, Cupiagua and many others.[4] Chipaque also sourced the oilfields of the Llanos Orientales.[5] In the Chitasugá-1 well, drilled between 1980 and 1981, from the sandstones of the Chipaque Formation half a million m³ of water were produced.[6] The sandstone beds are reservoir rocks for oil in the Eastern Ranges.[3]

Stratigraphy and depositional environment[edit]

The Chipaque Formation overlies the Une Formation and is overlain by the Guadalupe Group. The core of the Zipaquirá Anticline consists of the Chipaque Formation.[7] The age has been estimated to be Cenomanian-Turonian.[1] Stratigraphically, the formation is time equivalent with the Simijaca Formation.[8] The formation has been deposited in an open to shallow marine platform setting.[9] The deposition is represented by a maximum flooding surface and anoxic conditions.[10]

Outcrops[edit]

Chipaque Formation is located in the Bogotá savanna
Chipaque Formation
Type locality of the Chipaque Formation to the south of the Bogotá savanna

The Chipaque Formation is apart from its type locality, found in the Eastern Hills of Bogotá, the Ocetá Páramo and many other locations in the Eastern Ranges. The anticlinals of the Río Blanco-Machetá, San José and Sopó-Sesquilé are composed of the Chipaque Formation.[1]

Regional correlations[edit]

Cretaceous stratigraphy of the central Colombian Eastern Ranges
Age Paleomap VMM Guaduas-Vélez W Emerald Belt Villeta anticlinal Chiquinquirá-
Arcabuco
Tunja-
Duitama
Altiplano Cundiboyacense El Cocuy
Maastrichtian Umir Córdoba Seca eroded Guaduas Colón-Mito Juan
Umir Guadalupe
Campanian Córdoba
Oliní
Santonian La Luna Cimarrona - La Tabla La Luna
Coniacian Oliní Villeta Conejo Chipaque
Güagüaquí Loma Gorda undefined La Frontera
Turonian Hondita La Frontera Otanche
Cenomanian Simití hiatus La Corona Simijaca Capacho
Pacho Fm. Hiló - Pacho Churuvita Une Aguardiente
Albian Hiló Chiquinquirá Tibasosa Une
Tablazo Tablazo Capotes - La Palma - Simití Simití Tibú-Mercedes
Aptian Capotes Socotá - El Peñón Paja Fómeque
Paja Paja El Peñón Trincheras Río Negro
La Naveta
Barremian
Hauterivian Muzo Cáqueza Las Juntas
Rosablanca Ritoque
Valanginian Ritoque Furatena Útica - Murca Rosablanca hiatus Macanal
Rosablanca
Berriasian Cumbre Cumbre Los Medios Guavio
Tambor Arcabuco Cumbre
Sources


Stratigraphy of the Llanos Basin and surrounding provinces
Ma Age Paleomap Regional events Catatumbo Cordillera proximal Llanos distal Llanos Putumayo VSM Environments Maximum thickness Petroleum geology Notes
0.01 Holocene
Holocene volcanism
Seismic activity
alluvium Overburden
1 Pleistocene
Pleistocene volcanism
Andean orogeny 3
Glaciations
Guayabo Soatá
Sabana
Necesidad Guayabo Gigante
Alluvial to fluvial (Guayabo) 550 m (1,800 ft)
(Guayabo)
[11][12][13][14]
2.6 Pliocene
Pliocene volcanism
Andean orogeny 3
GABI
Subachoque
5.3 Messinian Andean orogeny 3
Foreland
Marichuela Caimán Honda [13][15]
13.5 Langhian Regional flooding León hiatus Caja León Lacustrine (León) 400 m (1,300 ft)
(León)
Seal [14][16]
16.2 Burdigalian Miocene inundations
Andean orogeny 2
C1 Carbonera C1 Ospina Proximal fluvio-deltaic (C1) 850 m (2,790 ft)
(Carbonera)
Reservoir [15][14]
17.3 C2 Carbonera C2 Distal lacustrine-deltaic (C2) Seal
19 C3 Carbonera C3 Proximal fluvio-deltaic (C3) Reservoir
21 Early Miocene Pebas wetlands C4 Carbonera C4 Barzalosa Distal fluvio-deltaic (C4) Seal
23 Late Oligocene
Andean orogeny 1
Foredeep
C5 Carbonera C5 Orito Proximal fluvio-deltaic (C5) Reservoir [12][15]
25 C6 Carbonera C6 Distal fluvio-lacustrine (C6) Seal
28 Early Oligocene C7 C7 Pepino Gualanday Proximal deltaic-marine (C7) Reservoir [12][15][17]
32 Oligo-Eocene C8 Usme C8 onlap Marine-deltaic (C8) Seal
Source
[17]
35 Late Eocene
Mirador Mirador Coastal (Mirador) 240 m (790 ft)
(Mirador)
Reservoir [14][18]
40 Middle Eocene Regadera hiatus
45
50 Early Eocene
Socha Los Cuervos Deltaic (Los Cuervos) 260 m (850 ft)
(Los Cuervos)
Seal
Source
[14][18]
55 Late Paleocene PETM
2000 ppm CO2
Los Cuervos Bogotá Gualanday
60 Early Paleocene SALMA Barco Guaduas Barco Rumiyaco Fluvial (Barco) 225 m (738 ft)
(Barco)
Reservoir [11][12][15][14][19]
65 Maastrichtian
KT extinction Catatumbo Guadalupe Monserrate Deltaic-fluvial (Guadalupe) 750 m (2,460 ft)
(Guadalupe)
Reservoir [11][14]
72 Campanian End of rifting Colón-Mito Juan [14][20]
83 Santonian Villeta/Güagüaquí
86 Coniacian
89 Turonian Cenomanian-Turonian anoxic event La Luna Chipaque Gachetá hiatus Restricted marine (all) 500 m (1,600 ft)
(Gachetá)
Source [11][14][21]
93 Cenomanian
Rift 2
100 Albian Une Une Caballos Deltaic (Une) 500 m (1,600 ft)
(Une)
Reservoir [15][21]
113 Aptian
Capacho Fómeque Motema Yaví Open marine (Fómeque) 800 m (2,600 ft)
(Fómeque)
Source (Fóm) [12][14][22]
125 Barremian High biodiversity Aguardiente Paja Shallow to open marine (Paja) 940 m (3,080 ft)
(Paja)
Reservoir [11]
129 Hauterivian
Rift 1 Tibú-
Mercedes
Las Juntas hiatus Deltaic (Las Juntas) 910 m (2,990 ft)
(Las Juntas)
Reservoir (LJun) [11]
133 Valanginian Río Negro Cáqueza
Macanal
Rosablanca
Restricted marine (Macanal) 2,935 m (9,629 ft)
(Macanal)
Source (Mac) [12][23]
140 Berriasian Girón
145 Tithonian Break-up of Pangea Jordán Arcabuco Buenavista
Saldaña Alluvial, fluvial (Buenavista) 110 m (360 ft)
(Buenavista)
"Jurassic" [15][24]
150 Early-Mid Jurassic
Passive margin 2 La Quinta
Noreán
hiatus Coastal tuff (La Quinta) 100 m (330 ft)
(La Quinta)
[25]
201 Late Triassic
Mucuchachi Payandé [15]
235 Early Triassic
Pangea hiatus "Paleozoic"
250 Permian
300 Late Carboniferous
Famatinian orogeny Cerro Neiva
()
[26]
340 Early Carboniferous Fossil fish
Romer's gap
Cuche
(355-385)
Farallones
()
Deltaic, estuarine (Cuche) 900 m (3,000 ft)
(Cuche)
360 Late Devonian
Passive margin 1 Río Cachirí
(360-419)
Ambicá
()
Alluvial-fluvial-reef (Farallones) 2,400 m (7,900 ft)
(Farallones)
[23][27][28][29][30]
390 Early Devonian
High biodiversity Floresta
(387-400)
Shallow marine (Floresta) 600 m (2,000 ft)
(Floresta)
410 Late Silurian Silurian mystery
425 Early Silurian hiatus
440 Late Ordovician
Rich fauna in Bolivia San Pedro
(450-490)
Duda
()
470 Early Ordovician First fossils Busbanzá
(>470±22)
Guape
()
Río Nevado
()
[31][32][33]
488 Late Cambrian
Regional intrusions Chicamocha
(490-515)
Quetame
()
Ariarí
()
SJ del Guaviare
(490-590)
San Isidro
()
[34][35]
515 Early Cambrian Cambrian explosion [33][36]
542 Ediacaran
Break-up of Rodinia pre-Quetame post-Parguaza El Barro
()
Yellow: allochthonous basement
(Chibcha Terrane)
Green: autochthonous basement
(Río Negro-Juruena Province)
Basement [37][38]
600 Neoproterozoic Cariri Velhos orogeny Bucaramanga
(600-1400)
pre-Guaviare [34]
800
Snowball Earth [39]
1000 Mesoproterozoic
Sunsás orogeny Ariarí
(1000)
La Urraca
(1030-1100)
[40][41][42][43]
1300 Rondônia-Juruá orogeny pre-Ariarí Parguaza
(1300-1400)
Garzón
(1180-1550)
[44]
1400
pre-Bucaramanga [45]
1600 Paleoproterozoic Maimachi
(1500-1700)
pre-Garzón [46]
1800
Tapajós orogeny Mitú
(1800)
[44][46]
1950 Transamazonic orogeny pre-Mitú [44]
2200 Columbia
2530 Archean
Carajas-Imataca orogeny [44]
3100 Kenorland
Sources
Legend
  • group
  • important formation
  • fossiliferous formation
  • minor formation
  • (age in Ma)
  • proximal Llanos (Medina)[note 1]
  • distal Llanos (Saltarin 1A well)[note 2]


Gallery[edit]

See also[edit]

Notes and references[edit]

Notes[edit]

  1. ^ based on Duarte et al. (2019)[47], García González et al. (2009),[48] and geological report of Villavicencio[49]
  2. ^ based on Duarte et al. (2019)[47] and the hydrocarbon potential evaluation performed by the UIS and ANH in 2009[50]

References[edit]

  1. ^ a b c d Montoya Arenas & Reyes Torres, 2005, p.26
  2. ^ Lobo Guerrero, 1992, p.4
  3. ^ a b García González et al., 2009, p.49
  4. ^ Cortés et al., 2009, p.4
  5. ^ García González et al., 2009, p.58
  6. ^ Lobo Guerrero, 1993, p.20
  7. ^ García & Jiménez, 2016, p.24
  8. ^ Montoya Arenas & Reyes Torres, 2005, p.22
  9. ^ García González et al., 2009, p.209
  10. ^ Villamil, 2012, p.164
  11. ^ a b c d e f García González et al., 2009, p.27
  12. ^ a b c d e f García González et al., 2009, p.50
  13. ^ a b García González et al., 2009, p.85
  14. ^ a b c d e f g h i j Barrero et al., 2007, p.60
  15. ^ a b c d e f g h Barrero et al., 2007, p.58
  16. ^ Plancha 111, 2001, p.29
  17. ^ a b Plancha 177, 2015, p.39
  18. ^ a b Plancha 111, 2001, p.26
  19. ^ Plancha 111, 2001, p.24
  20. ^ Plancha 111, 2001, p.23
  21. ^ a b Pulido & Gómez, 2001, p.32
  22. ^ Pulido & Gómez, 2001, p.30
  23. ^ a b Pulido & Gómez, 2001, pp.21-26
  24. ^ Pulido & Gómez, 2001, p.28
  25. ^ Correa Martínez et al., 2019, p.49
  26. ^ Plancha 303, 2002, p.27
  27. ^ Terraza et al., 2008, p.22
  28. ^ Plancha 229, 2015, pp.46-55
  29. ^ Plancha 303, 2002, p.26
  30. ^ Moreno Sánchez et al., 2009, p.53
  31. ^ Mantilla Figueroa et al., 2015, p.43
  32. ^ Manosalva Sánchez et al., 2017, p.84
  33. ^ a b Plancha 303, 2002, p.24
  34. ^ a b Mantilla Figueroa et al., 2015, p.42
  35. ^ Arango Mejía et al., 2012, p.25
  36. ^ Plancha 350, 2011, p.49
  37. ^ Pulido & Gómez, 2001, pp.17-21
  38. ^ Plancha 111, 2001, p.13
  39. ^ Plancha 303, 2002, p.23
  40. ^ Plancha 348, 2015, p.38
  41. ^ Planchas 367-414, 2003, p.35
  42. ^ Toro Toro et al., 2014, p.22
  43. ^ Plancha 303, 2002, p.21
  44. ^ a b c d Bonilla et al., 2016, p.19
  45. ^ Gómez Tapias et al., 2015, p.209
  46. ^ a b Bonilla et al., 2016, p.22
  47. ^ a b Duarte et al., 2019
  48. ^ García González et al., 2009
  49. ^ Pulido & Gómez, 2001
  50. ^ García González et al., 2009, p.60

Bibliography[edit]

  • García, Helbert, and Giovanny Jiménez. 2016. Structural analysis of the Zipaquirá Anticline (Eastern Cordillera, Colombia). Boletín de Ciencias de la Tierra, Universidad Nacional de Colombia 39. 21–32. .
  • Schütz, Christian. 2012. Combined structural and Petroleum Systems Modeling in the Eastern Cordillera Basin, Colombia (MSc. thesis), 1–161. Rheinisch-Westfälische Technische Hochschule Aachen & Instituto Colombiano del Petróleo.
  • Villamil, Tomas. 2012. Chronology Relative Sea Level History and a New Sequence Stratigraphic Model for Basinal Cretaceous Facies of Colombia, 161–216. Society for Sedimentary Geology (SEPM).
  • Cortés, Martín; Diego García; Germán Bayona, and Yolima Blanco. 2009. Timing of oil generation in the Eastern flank of the Eastern Cordillera of Colombia based on kinematic models; implications in the Llanos Foothills and Foreland charge, 1–8. Asociación Colombiana de Geólogos y Geofisicos del Petróleo (ACGGP).
  • García González, Mario; Ricardo Mier Umaña; Luis Enrique Cruz Guevara, and Mauricio Vásquez. 2009. Informe Ejecutivo - evaluación del potencial hidrocarburífero de las cuencas colombianas, 1–219. Universidad Industrial de Santander.
  • Montoya Arenas, Diana María, and Germán Alfonso Reyes Torres. 2005. Geología de la Sabana de Bogotá, 1–104. INGEOMINAS.
  • Guerrero Uscátegui, Alberto Lobo. 1993. Informe sobre la Cuenca Petrolífera de la Sabana de Bogotá, Colombia, 1–29.
  • Guerrero Uscátegui, Alberto Lobo. 1992. Geología e Hidrogeología de Santafé de Bogotá y su Sabana, 1–20. Sociedad Colombiana de Ingenieros.

Reports[edit]

Maps[edit]

External links[edit]